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Abstract 
Degradation of watershed areas in Kenya’s basins is on the increase and is currently a major concern 
for the government. The main causes of watershed degradation stem from the abuse and poor 
management of forests and soils, overgrazing, extension of settlements into watershed areas, and 
unsuitable felling of trees for fuel wood.  Recent legislative reforms in the water and environmental 
sector have been introduced to stem these environmental negative trends. However, extensive 
quantitative hydrologic analysis is necessary for the assessment of the water balance of various basins 
to form a basis for policy actions. In this regard, modelling the hydrologic cycle at a local scale still 
remains the most important scientific method of research for the water balance assessment of basins. 
The study area chosen in this study is the Nzoia basin in Kenya. This basin is a typical example of a 
flood disaster prone basin experiencing increased flood related disasters due to the increased watershed 
degradation in the recent past. The Nzoia basin is situated between latitudes 10 30’N and 00 05’S and 
between longitudes 340E and 350 45’E and is the largest basin in Kenya’s Lake Victoria basin with an 
approximate area of 12,709km2 and a length of 334km to its outfall into the lake. The Nzoia system has 
its sources in the forested highlands (Mt. Elgon, Cherangani Hills, Nandi Hills and Kakamega forest). 
The objective of this study is to simulate streamflow changes as a result of the land use/cover status as 
at 1973, 1986 and 2000. Land use/cover data were based on Landsat images for these years.  The 
runoff response as a result of the observed land use/cover change was tested by keeping constant all 
input datasets in a SWAT model and varying the land use. The results from the model showed that with 
the expansion of the area under agriculture, the stream flow increases during the rainy seasons and 
reduces during the dry seasons, whereas when the area under forest cover is increased the peak stream 
flow reduces, but when the forest cover is reduced to almost zero there is an increased peak and mean 
stream flow in the basin. 
It is therefore worth noting that a decrease in surface runoff would be desirable, as this would also 
decrease the devastating effects of floods; the rapid expansion of urban centres in the lower parts of the 
catchment (Mumias, Bungoma, Rwambwa) can be said to be a major contributing factor to the annual 
devastating floods. The results also indicated an increasing trend in rainfall amounts in parts of the 
basin between the periods 1970 - 1998. A study of three rainfall stations (1BD02, 1DA02 and 
1DD02A) has shown a significant increase in rainfall while one station, in the lower part of the 
catchment (EE01), has shown a significant decrease. 
The area under forest cover decreased between 1970’s and 1986 by 6.4% in the northwest and south of 
the catchment. But between the 1980’s and the 2000’s there was an increase in area under forest cover 
by 41.3%. Agricultural land use showed an increase in areal coverage between 1970’s and 1986 by 
6.7%, but in the year 2000’s the agricultural activities declined by 4.6%. The area under 
bushland/shrubland/riverine agriculture increased between the 1970’s, 1986 and the 2000’s by about 
123.4% and 11.10% respectively. This could be as a result of an expansion in riverine agriculture. 
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1. INTRODUCTION 

1.1. Brief Description of Project Area 

The River Nzoia basin is the largest river basin in Kenya’s Victoria basin. It has its sources in the 
forested highlands. The River Nzoia discharges into Lake Victoria just a short distance north of the 
Yala swamp in Bunyala, Budalangi Division, and Busia District. The basin covers a catchment area of 
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about 12,700 km2 with heavy forest cover in the upper parts of the catchment and low trees and bushes 
in the lower reaches. The catchment area is bounded by latitudes 1o 30’N and 0o 30’S and longitude 34o 

E and 35o 45’E  (Figure 1). The River Nzoia experiences perennial flooding in its lower reaches 
especially the Budalangi area of Busia district. The mean annual discharge of the River Nzoia is 
estimated at 1777Mm3/year. From a physiographic and land use point of view the basin has four 
distinct zones: a mountain zone, plateau zone, transition zone and lowland zone. The mountain zone is 
forested but suffers severe land degradation; the plateau zone is the major farming zone. Small scale 
farming continues in the transition and flood prone lowland areas. The flood prone area is generally flat 
and swampy. There are two rainfall peaks in the catchment; the first peak comes in the months of April 
to June, while the other occurs in July to September. December through March are dry months in 
Nzoia. Comparatively to other parts in Kenya, the basin receives high rainfalls, whose average annual 
values vary between 1,000 to 1,500 mm. 
 
The Nzoia basin has a high incidence of poverty with a rich natural resource endowment.  While the 
Western Kenyan region is endowed with natural resources such as forests, rivers and lakes, which 
should be adequate for poverty reduction, poverty and vulnerability nonetheless afflict many in the 
region. The communities in the Nzoia basin are confronted with flooding, disease, and degradation of 
natural resources, especially land. The urban centres of Western Kenya have the highest incidence of 
poverty at 80 percent.  The situation is aggravated by perennial flooding, mismanagement of natural 
resources, and the HIV/AIDS pandemic. 
 
The economy of the region is still largely rural, and more than 90 percent of the population earns its 
living from agriculture and livestock. The farms are privately owned ranging from 1 – 3 ha. However, 
the large commercial farms with an average of 50 – 100 ha or more characterize such districts as Trans 
Nzoia and Uasin Gishu. 
 

 
Figure 1: Nzoia Catchment 

1.2. Use of Distributed Watershed Models 

Hydrologic process and water resource issues are commonly investigated using distributed watershed 
models. These watershed models require physiographic information such as the configuration of the 
channel network, the location of drainage divides, channel length and slope, and sub-catchment 
geometric properties. Traditionally, these parameters are obtained from maps or field surveys. Over the 
last two decades this information has been increasingly derived directly from digital representations of 
the topography (Jenson and Domingue, 1988; Mark, 1984; Moore et al., 1991; Martz and Garbrecht, 



Impact of Land Use /Cover dynamics on Streamflow: A Case of Nzoia River Catchment, Kenya 
 

Nile Basin Water Science& Engineering Journal, Vol.3, Issue2, 2010 66

1992). The digital representation of the topography is called a Digital Elevation Model (DEM). The 
technological advances provided by Geographic Information Systems (GIS) and the increasing 
availability and quality of DEMs have greatly expanded the application potential of DEMs in many 
hydrologic, hydraulic, water resources and environmental investigations (Moore et al., 1991).  

SWAT is a process-based distributed-parameter simulation model operating on a daily time step, and is 
designed to predict the impact of management on water, sediment, and agricultural chemical yields. 
The model is physically based, computationally efficient, and capable of continuous simulation over 
long time periods. SWAT uses readily available inputs and has the capability of routing runoff through 
streams and reservoirs, and allows for the addition of flows and the inclusion of measured data from 
point sources. Major model components include weather, hydrology, soil temperature and properties, 
plant growth, nutrients, pesticides, bacteria and pathogens, and land management.  

Apart from the ability to take into account land use and soil data, SWAT differs from other physical 
models in its ability to separate the watershed into sub-basins and Hydrologic Response Units (HRUs). 
The main basin is divided into smaller basins, by selecting points on the stream network that act as 
outlets. In this way, the model can provide output data, such as discharge, at specific points of the river 
network. The partitioning of the basin or sub-basins in HRUs has the means of dividing the watershed 
into no more than 100 different areas, which have the same properties regarding land use and soil. The 
equations are applied in each HRU separately and surface runoff and ground water flow are routed to 
neighboring HRUs to the outlet of the basin (Arnold et al., 1999). The hydrologic component of SWAT 
is based on the following water balance equation: 

SWt = SW + ∑ (R – Qi –ETi – Pi - QRi) ……………………………………………………………(1-1) 
 
where: SWt is the final soil water content (mm); 

SW is the water content available for plant uptake, defined as the initial soil water content 
minus  the  permanent wilting point water content (mm); 

              t is the time in days; 
              R is the rainfall (mm);  
             Qi is the surface runoff (mm);  
              ETi is the evapotranspiration (mm); 
             Pi is the percolation (mm); and  
             QRi is the return flow. 

The hydrologic processes simulated by the sub basins as included in the water balance equation are 
precipitation, surface runoff, evapotranspiration, percolation and return flow. The daily weather data 
required by SWAT are precipitation, temperature (maximum and minimum), solar radiation, relative 
humidity and wind speed. After inputting precipitation and temperature (maximum and minimum) data, 
the weather generator then generates solar radiation and relative humidity for the day. Finally, wind 
speed is generated independently. 

Runoff is simulated separately for each of the HRU and combined to give the total stream flow for the 
sub-basin, which is then combined with the stream flow for the other sub-basins to give the stream flow 
for the whole basin. According to Neitsch et al, 2002, SWAT predicts the surface runoff using the 
modified SCS Curve number method or the Green and Ampt infiltration method. In this study the SCS 
Curve number, which is a function of the soil permeability, land use and antecedent moisture condition, 
was used. The basic equation used by the SCS curve number is  

 

ܳ ൌ ሺோିூሻଶ
ோିூାௌ

………………………………………………………………………………………..(1- 2) 
where: Q is the accumulated surface runoff or excess rainfall (mm), 

R is the rain depth for the day, 
I is the initial abstraction, which includes the surface storage, interception and infiltration prior 
to the runoff (mm), 
S is the retention parameter (mm). 

Routing in a stream channel is divided into water, sediment, nutrients and organic chemical routing 
(Neitsch et al, 2002a). In routing the water, SWAT accounts for any losses. These losses include those 
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due to evaporation, transmission or any diversion. The amount of water added as a result of the 
precipitation in the main channel and point sources discharges is also accounted for. 

In the channel, the Manning equation is used to calculate rate and velocity of flow in the reach of each 
sub basin for a given time step. The Manning equation is given by equations 3 and 4 below for the rate 
and velocity respectively. 

q= AR2/3S1/2………………………………………………………………………………………….(1-3) 

          n 
 
V= R2/3S1/2……………………………………………………………………………………………(1-4) 

          n 
where: q is the rate of flow in the main channel (m3/s); 

A is the cross sectional area of the channel (m2); 
R is the hydraulic radius for a given depth of flow (m); 
S is the slope along the channel length (m/m); 
n is the manning coefficient for the channel; and 
V is the velocity of the flow (m/s). 

The model assumes that the main channel has a trapezoidal shape with a 2:1 run to rise ratio. When the 
volume of water in the reach exceeds the maximum amount that can be contained by the main channel, 
the excess amount spreads across the flood plain. SWAT routes the stream flow downstream using 
either variable storage or the Muskingum method (Neitsch et al, 2002a). 

The effects of the land use/change on the stream flows are manifested at different spatial and temporal 
scales. The possible changes in the land use/cover include deforestation (afforestation), intensification 
of agriculture, drainage of wetlands and urbanization. 

Deforestation, which has converse effects to afforestation, affects significantly the characteristics of the 
stream flow (Calder, 1992). Though considered a myth or folklore (McCulloch and Robbinson, 1993, 
Calder, 1998) forests are thought to generate rain, regulate low flows, reduce floods, ameliorate soil 
erosion and sterilize water. The intensification of agriculture affects the runoff generated through the 
alteration of evaporation and the timing of runoff. These effects are compounded by the replacement of 
certain crops, which alters the leaf area index (Calder, 1992).  

Wetlands do not or only marginally affect the basin’s seasonal water balance (Calder, 1998). However, 
due to the presence of a free water surface and the lack of water stress, the wetland vegetation normally 
has a high evaporation rate compared to other land covers. This in turn affects the annual stream flow, 
which is likely to be less compared to other land uses (Calder, 1992). 

The earth’s climate is also changing gradually. In East Africa for example, catchments are displaying a 
small increase in annual precipitation received and this makes them wetter. These changes definitely 
affect the quantity of stream flow. 

2. METHODOLOGY 

This study was carried out in four steps. First, a database was established and land use/cover maps for 
the years 1973, 1986 and 2000 were produced to analyse the land use/cover dynamics. Second, a 
SWAT simulation run was carried out using a set of input variables, and a sensitivity analysis was 
performed to identify parameters that influence the predicted streamflow the most. Third, the efficiency 
of the model was assessed by comparing simulated and observed annual and monthly streamflow. 
Fourth, in order to test the assumption that land use/cover change has affected the watershed 
streamflow; further simulations were performed using both maps for the same period with different 
land use/cover scenarios. 

The basic data set that are required to develop an input database for the model are: topography, soil, 
land use and climatic data. A Digital Elevation Model (DEM) of the study area at a 30 metre resolution 
was obtained from the World Agroforestry Centre (ICRAF). The DEM was used to delineate the 
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topographic characterisation of the watershed and to determine the hydrological parameters of the 
watershed such as the slope, flow accumulation, flow direction, and stream network. AVSWAT-X, an 
ArcView interface, was used to delineate the watershed. To capture the heterogeneity in physical 
properties, the watershed was subdivided into 29 (twenty-nine) sub-watersheds, and each one of the 
sub-watersheds was partitioned into Hydrologic Response Units (HRUs) that consist of homogeneous 
land use, management, and soil characteristics.  

Simultaneously, spatial databases were developed using satellite images in their raw form. The images 
available were MSS Datasets for 1970’s, TM datasets for 1980’s and ETM datasets for 2000’s. The 
Nzoia river basin is mapped fully by four images, that is: p169r59, p169r60, p170r59, p170r60, where 
p=path r=raw. For the MSS Datasets two images i.e p180r59 and p181r60 were used. The satellite 
images were obtained from the ICRAF library.  

Three land use/cover maps from 1973, 1986 and 2000 were produced using the ENVI 4.3 software. 
Visual interpretation and supervised classification based on the maximum likelihood methods for the 
satellite images were employed. A representation of the regions of interest known as the training sites 
were digitized giving them different IDs and unique colours.  

2.1. SWAT Input Data and Their Sources 

The following sources were used to provide the input data for SWAT: 

Digital Elevation Model (DEM): A Digital Elevation Model (DEM) gives the elevation, slope and 
defines the location of the streams network in a basin. A DEM with a spatial resolution of 30 m by 30 
m was used in this study and it was obtained from the International Centre for Research in Agroforestry 
(ICRAF). 

Land Use/Cover Map: The land use/cover map gives the spatial extent and classification of the various 
land use/ cover classes of the study area. The land use/cover data combined with the soil cover data 
generates the hydrologic characteristics of the basin or the study area, which in turn determines the 
excess precipitation, recharge to the ground water system and the storage in the soil layers. The land 
use/cover data was obtained from ICRAF for three years, that is, for 1970, 1986 and 2000. 

Soil Map and data: The soil data as required by SWAT to predict the stream flow should include the 
relevant hydraulic conductivity properties: the soil bulk density, the saturated hydraulic conductivity 
and the soil available water capacity (SOL_AWC). The soil data was obtained from the Internet (ISRIC 
website), the parameters of the soil such as the Soil Bulk Density (g/cc), Saturated Hydraulic 
Conductivity, Ks (mm/hr) and Soil Available Water Capacity were missing and were estimated using a 
hydrology programme called the Soil Water Characteristics which was downloaded from the Internet. 

Stream Flow data: Stream flow data was available for four Stations 1BD02, 1DA02, 1DD01A and 
1EE01. The stations had data ranging in time from 1947 to 1999, though they had missing gaps. Table 
(2) gives the summary of the streamflow data and the percentage of missing data for the quality of data 
used in the study. 

Table 2: Summary of available streamflow data for Nzoia basin (Source: MWI) 

Gauging Station River Period Recorded Percentage Missing 

1BD02 Large Nzoia 1966 - 1990     21 

1DA02 Nzoia 1947 - 1996     38 

1DD01A Nzoia 1962 - 1999      29 

1EE01 Nzoia 1963 - 1999      27 

Weather data: Rainfall data were available for eight rainfall recording stations in the basin. The 
collected data ranges in time between 1960 and 1998, though there were quite a number of missing 
data. The other weather data used were: temperature data (maximum and minimum) for the Kitale and 
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Kakamega Meteorological stations. Tables (3) and (4) give the summary of the weather data used for 
this study. 

Table 3: Summary of available rainfall data for Nzoia catchment (Source: KMD) 

Rainfall  Station ID Name Period Recorded Percentage Missing 

8834098 Kitale Met. Station 1976 - 1990 5 
8935025 Eldoret Loreto Convent Station 1976 - 1990 4 
8934016 Lugari Ltd. Station 1976 - 1990 6 
8934096 Kakamega Experimetal Station 1976 - 1990 7 
8934098 Kimilili Forest Station 1976 - 1990 25 
8934013 Mumias St. Mary Teresa’s School 1976 - 1990 22 
8934127 Ukwala Dispensary 1976 - 1990 45 
8935061 Kipkabus Tilal Station 1976 - 1990 40 

 
Table 4: Summary of available weather data for Nzoia catchment (Source: KMD) 

 

3. RESULTS AND DISCUSSION 

From the study and data obtained from the satellite imagery for Nzoia (Table 5, and Figure 2and 3), the 
catchment has undergone numerous land use/cover changes in recent decades. Forest cover decreased 
markedly between 1970’s and 1986 by 48.3%, especially for the regions in the northwest and the south 
of the catchment. But the situation changed: between 1980’s and 2000’s there was an increase in areas 
under forest cover of 41.3% (Table 5). The decrease could be attributed to the cutting of trees in the 
forests for various uses such as firewood, timber and clearing for agricultural purposes, and the 
increase in forest cover in the second period could be due to government intervention through tree 
planting campaigns and an increase in area under tea plantation with forest cover used for wind breaks. 
In contrast, the area under agricultural use is seen to have decreased between 1970’s, 1980’s and 
2000’s by 22.4% and 4.6% respectively. These decreases could be linked to changes in weather 
patterns, and the effects of urbanization and population growth. The change matrix results (Table 5) 
reveal that there is a gradual increase in the area under bush land/ shrub land/riverine agriculture; for 
the years 1970’s to 1986 and 1986 to 2000’s the percentage increase registered 123.4% and 11.1% 

respectively. This change could be linked to invasion of river banks by small scale farmers due to 
continued failure of enough rainfall to sustain the rainfed agricultural practices especially in the middle 
and the lower parts of the catchment. The built up area also changed significantly due to rapid 
development of urban centres such as the expansion of the towns Kakamega, Eldoret and Kitale. The 
growth of these urban centres can be attributed to high rate of rural urban migration, hence the decline 
in agriculture.  

Meteorological Station Weather Parameter Period  Recorded Percentage 
Missing 

Kitale Maximum Temperature 1981 - 2007 27 
 Minimum Temperature 1981 - 2007 49 
    
Kakamega Maximum Temperature 1981 - 2007 26 
 Minimum Temperature 1981 - 2007 38 
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Figure 2: Land use/cover map 1986 

 
Figure 3: Land use/cover map 2000 

 
Table 5: Land use/cover change in Nzoia between the years 1986 and 2000 

 1986  2000  Change  

Land use/ Cover type Area (km2) % Area (km2) % Area (km2) % 

Forest 1110.2 8.7 1568.69 12.4 458.49 41.3 

Mixed Forest 936.82 7.4 1402.3 11.0 465.48 49.7 

Mountain Forest 173.38 1.3 166.39 1.3 -6.99 -4.0 

Agriculture 11560.79 91 11030.97 86.8 -529.82 -4.6 

Mixed Agriculture 4963.18 39.1 5514.92 43.4 551.74 11.1 

Agriculture dense 6542.35 51.5 5460.88 43 -1081.47 -16.5 

Sugar cane 55.26 0.4 55.17 0.4 -0.09 -0.2 

Built Up areas 14.23 0.1 84.77 0.7 70.54 495.7 

Water 16.24 0.13 37.63 0.3 21.39  

 
The results of the impact on the streamflow due to land use/cover change scenarios, against the 
baseline, deduced by this research work are given in Table (6). The baseline scenario was selected on 
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in terms of the values obtained for R2 can be improved later on by applying good quality datasets and 
using representative historic data. 

4. CONCLUSIONS 

The method presented for quantifying the effects of land-use/cover change on the streamflow for the 
Nzoia catchment combined two advanced models: the hydrological model SWAT and the land 
use/cover change procedure ENVI. Four different land use change scenarios were applied to the study 
basin and the discharge outputs were compared to those for the base run. All the four scenarios gave an 
increase in discharge during wet months, and a decrease during dry periods.  

SWAT has been used in this study to analyze the impact of environmental chang, in the Nzoia 
catchment within the Lake Victoria Basin. The results include water balance statistics, land cover 
maps, land cover change scenarios. The study has also investigated land cover changes that have taken 
place within the catchment and their impact on the hydrology of this catchment.  

The SWAT model was calibrated against streamflow data and parameters were adjusted based on a 
sensitivity analysis, as well as those that were deemed needing adjustment because their initial values 
were not adequately estimated. Keeping the model parameters within reasonable ranges minimized the 
uncertainty in the simulations. In general, there was good agreement between the measured and 
simulated daily streamflow for the calibration period (NSE=0.94). The simulation of baseflow was 
slightly underestimated but overall, the agreement between the observed and simulated streamflow was 
acceptable. The statistical and graphical evaluations of the model performance showed that it could be 
reliably used for assessing impacts of land use /cover change on streamflow.  

This study has shown that SWAT, which was developed in the USA, could be used to model hydrology 
in Kenyan watersheds with some few changes and modifications, such as to the crop and soil databases. 
These results show that for this study region and for the considered period, land cover changes have 
contributed to greater runoff changes affecting the streamflow amounts and baseflow, hence resulting 
in more frequent devastating floods. 
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