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Abstract 
In this research, an extreme value analysis methodology was used to recognize the anomalies in tail 
behaviour of the flood frequency distribution in an easy and visual way by means of the so-called 
Quantile-Quantile plots (Q-Q plots). The type of distribution and the optimal threshold level can be 
derived with this method in a most efficient way. The methodology was applied to data from Tanzania 
(catchment of Victoria Lake in Tanzania; which includes Mara, Mwanza and Kagera Regions, daily 
discharge values from January, 1954 to December, 1986) for testing and first application. Based on the 
expertise built up for the Tanzanian data, the extreme value analysis was applied using Kenyan 
discharge data. The methodology is especially interesting because of the visual nature and it can be 
used afterwards in combination with the traditional Method Of Moments (MOM) and Maximum 
Likelihood Method (ML) methods. In that way, the advantages of both methods could be combined and 
an efficient extreme value analysis is made. The research results indicated that, to get a precise result 
applicable to the hydraulic engineering practice, it is strongly recommended to use daily data (as for 
Victoria Lake catchment in Tanzania; which includes Mara, Mwanza and Kagera Regions). This is 
because of the peak flow that will determine the flooding. The monthly values (as only available for the 
Kenyan stations) are only indirect measures. 
 
The results indicated that, monthly averages should not necessarily follow the extreme value theory as 
this theory is only valid for maxima of a large number of variables; monthly averages can be 
considered as 'volumes' and these can also follow distributions other than the Generalized Pareto 
Distribution (GPD). By analyzing the behavior of the data points in different types of Q-Q plots, the 
asymptotic behavior of the tail of the distribution can be determined and discrimination can be made 
between Pareto-, exponential and bounded-type distributions. The discrimination is mainly based on an 
estimation of the extreme value index as the slope of the linear path in a so-called UH-plot. This slope 
is estimated by a weighted linear regression. Finally, it can be concluded that, the optimal threshold 
level can be derived easily as the threshold level that minimizes the mean-squared-error of the 
regression. 
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1. INTRODUCTION 

Over the past several decades, attempts have been made to develop integrated theories (i.e., models) of 
the water management systems. These models represent approximations to (i.e., simulations of) the 
actual processes, process interactions, and matter and energy exchanges that take place in the real 
world. The amount of details contained in simulation models varies widely, depending on the needs 
and objectives of the projects under which they were developed (Shaffer, 1995). Simulation models 
attempt to approximate real world processes and their interactions at the mechanistic level. They are 
extremely important components of decision support systems, and some expert systems may also 
contain simulation components. Simulation models usually contain logical relationships derived from 
the subject knowledge base and also may include expert systems (El-Sadek, 2001). 

In the immission modeling of receiving waters, the accurate description of extreme surface  water states 
(flooding, deteriorated water quality) and their recurrence rates is of primary importance (Willems, 
2000). In this study, an extreme value analysis methodology (Willems, 1998) was used to recognize the 
anomalies in tail behaviour of the flood frequency distribution in an easy and visual way by means of 
the so-called Quantile-Quantile plots (Q-Q plots). The type of distribution and the optimal threshold 
level can be derived with this method in an efficient way. In extreme value analysis the tail of the 
distribution, describing the probability of occurrence of extreme events, is analysed and modeled by a 
separate distribution. The considered extremes might exist of extreme rainfall intensities, storm 
volumes, water levels, discharges, water quality parameters, etc. In practice, its analysis is time 
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consuming as the determination of the ‘most highly probable’ type of extreme value distribution is 
difficult. By tradition, some plausible distributions (e.g. Gumbel, Exponential, Generalized Pareto, 
Weibull, Pearson) are ‘tried out’ and statistical tests are performed to find the ‘best’ distribution. The 
threshold level xt, above which the distribution is calibrated, is chosen arbitrarily. Very inaccurate 
extrapolations outside the range of observations can result from this anomaly. The anomaly, through a 
wrong type of distribution, is often caused by a nonoptimal threshold xt. This threshold is often chosen 
as the minimum threshold that is needed for the application. However, it should be determined in a 
statistical optimal way by maximizing the validity of the distribution above this threshold. Recently, a 
methodology has been worked out by Beirlant et al. (1996) to recognise the anomalies in tail behaviour 
in an easy and visual way by means of the so-called Q-Q plots. The type of distribution and the optimal 
threshold level can be derived in the same way. These features of the methodology were also stressed 
by Caers (1996), who applied the methodology to the extreme value analyses of diamond deposits 
(Willems, 2000). 

The methodology was applied to data from Tanzania (Victoria Lake in Tanzania; which includes Mara, 
Mwanza and Kagera Regions, daily discharge values from January, 1954 to December, 1986) for 
testing and first application. Based on the expertise built up for the Tanzanian data, the extreme value 
analysis was applied using Kenyan discharge data (eight station, monthly discharge values from 
January, 1950 to December, 2000). 

2. TWO CASE STUDIES IN THE NILE BASIN 

The catchment area of the Nile basin is about 2.9 million squared kilometers, which approximately 
represents one tenth of the area of Africa. The length of the main stream of the river Nile from its 
mouth on the Mediterranean Sea to its remote source, at the head of river Luvironza, is nearly 6,500 
kilometers. The catchment of the river Nile encompasses parts of many countries, namely: Tanzania, 
Uganda, Rwanda, Burundi, R D Congo, Kenya, Ethiopia, Eritrea, Sudan and Egypt. The proposed 
methodology has been applied using 33 years daily discharge data of Victoria Lake in Tanzania (1954-
1986); which includes Mara, Mwanza and Kagera Regions and 50 years (1950-2000) discharge data of 
eight rivers (Kenyan Rivers) draining into Vectoria Lake. Figure 1 shows Vectoria Lake within the Nile 
Basin. 

The physiography of the catchments comprises the highland zone (mountains, scarps, hills volcanic 
foot ridges, footslopes, uplands, plateaus erosional plainsand lowland zones (piedmont plains, river 
valleys, alluvial plains, and lakeside swamps). The elevation in the catchments ranges from 1130 m, on 
the lake shore, and 3030 m in the mountains. The slopes are commonly within the range between 0.5% 
and 30%. The areas have humid to subhumid climate within a mean annual rainfall range between 1000 
mm and 1600 mm. The rainfall is trimodal with long and short rains peak periods in March - May, and 
October - December and the third peak is in August. The mean temperature is 23º C that ranges 
between 17º and 25º C. The research selected the catchment of Victoria Lake in Tanzania; which 
includes Mara, Mwanza and Kagera Regions, collectively referred to as the Zone Lake, lying between 
1-4º S Lat. and 30-35º E Long. 

The soil types, climate, land forms determine the vegetation cover of the areas.  Land use varies with 
topography and agro-climatic conditions. The dominant land uses in the plains include sugarcane 
growing, both estate and small scale, rice under irrigation and dry season crops like maize, tomatoes, 
onions, etc. The other major activity is harvesting of papyrus and other species for making mats, seats, 
fish traps, and thatching materials. On the plains, the vegetation is mainly shrubs and herbs that have 
adapted to seasonal water logging. The rapid population growth, pollution from the agricultural land 
use and frequent heavy storms have caused environmental degradation. Forests are being cleared for 
fuel, timber and agriculture. Soil erosion is high in the higher slopes. There is progressive increase of 
water demand for the various uses and biodiversity, such as fish, are under threat. Figure 2, shows the 
Kenyan Rivers that drains into Vectoria Lake. 
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Figure 1: Victoria Lake within the Nile Basin 
 
 

 
Figure 2: Kenyan and Tanzanian Rivers draining into Victoria Lake 
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3. MATERIALS AND METHOD 

The Quantile-Quantile (Q-Q) plot is a graphical technique for determining if two data sets come from 
populations with a common distribution. A Q-Q plot is a plot of the quantiles of the first data set 
against the quantiles of the second data set. By a quantile, we mean the fraction (or percent) of points 
below the given value. That is, the 0.3 (or 30%) quantile is the point at which 30% percent of the data 
fall below and 70% fall above that value. A 45-degree reference line is also plotted. If the two sets 
come from a population with the same distribution, the points should fall approximately along this 
reference line. The greater the displacement from this reference line, the greater the evidence for the 
conclusion that the two data sets have come from populations with different distributions. The 
advantages of the Q-Q plot are given after (SEMATECH, 2004), as follows: 

1. The sample sizes do not need to be equal. 
2. Many distributional aspects can be simultaneously tested. For example, shifts in location, 

shifts in scale, changes in symmetry, and the presence of outliers can all be detected from this 
plot. For example, if the two data sets come from populations whose distributions differ only 
by a shift in location, the points should lie along a straight line that is displaced either up or 
down from the 45-degree reference line. 

In a Q-Q plot, empirical quantiles are shown against theoretical quantiles. The empirical quantiles 
match the observed extremes xi, i=1,……………,m (x1……………..xm), with pi=i/(m+c) as their 
corresponding empirical probabilities of exceedance. In this study, the scores c (0 c 1) are given value 
1, corresponding to the so-called Weibull plotting position of a quantile plot. For each empirical 
quantile xi, the theoretical is defined as F-1(1-pi). The function F(x) is the cumulative distribution that 
is tested in the Q-Q plot and the Q-Q plot is named according to this distribution. In some Q-Q plots, 
logarithmic transformed quantile values are plotted on both axes. If the observations agree with the 
considered distribution F(x), the points in the Q-Q plot approach the biosector (Willems, 2000). In 
practice, however, one wants to test the validity of the distribution F(x) without knowledge of the 
parameter values. Adapted Q-Q plot are therefore used. In these adapted Q-Q plot, the so-called 
`quantile function` U(p) is plotted instead of the inverse distribution F-1(1-p). The quantile function 
U(p) is defined as the simplest function that is linearly dependent on F-1(1-p) and independent on the 
parameter values of F(x). Quantile functions do not exit for all types of distributions. Expressions to 
draw exponential, Pareto and Weibull Q-Q plots, are listed hereafter in terms of (U(p);x) or (ln(U(p)); 
ln(x)), corresponding to the adapted form: 

• Exponential Q-Q plot : (-ln(i/m+1);xi), i=1,………….,m    (1) 
• Pareto Q-Q plot  : (-ln(i/m+1); ln(xi)), i=1,………….,m   (2) 
• Weibull Q-Q plot : (ln(-ln(i/m+1)); ln(xi)), i=1,………….,m    (3) 

 

The Q-Q plot is similar to a probability plot. For a probability plot, the quantiles for one of the data 
samples are replaced with the quantiles of a theoretical distribution. By looking for the Q-Q plot in 
which the largest observations behave in an asymptotic linear way, the type of the distribution of the 
studied extremes can be derived. By performing weighted linear regressions in this plot, also the 
optimal threshold can be derived. 

The optimal threshold is the value above which the calibrated extreme value distribution is the most 
accurate one. The methodology is applied in the Nile basin to data from Tanzania (catchment of 
Victoria Lake in Tanzania; which includes Mara, Mwanza and Kagera Regions, daily discharge values 
from January, 1954 to December, 1986) for testing and first application. Based on the expertise built up 
for the Tanzanian data, the extreme value analysis was applied using Kenyan discharge data. 
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4. RESULTS 

4.1 Catchment of Victoria Lake in Tanzania 

First, the daily discharge series was processed to extract the independent Peak-Over-Threshold (POT) 
values from the time series. Based on an analysis of these POT-values in the exponential Q-Q plot, the 
Pareto Q-Q plot and the generalized quantile plot (UH-plot), the sign of the extreme value index γ was 
firstly estimated. The sign was not significantly different from zero. This was concluded from all 3 
types of Q-Q plots.  From the UH-plot of Figure 3, it is clear that the extreme value index shows a 
fluctuation around the zero. At the most optimal threshold for estimation of the index (at rank number 
t=86), the index is almost zero (0.04). This conclusion was confirmed in the other plots.  In the 
exponential Q-Q plot of Figure 4, the points showed a linear tail behaviour. The slope of the points in 
the exponential Q-Q plot indeed became stable for the higher threshold levels (Figure 5). In the Pareto 
Q-Q plot, the points showed a continuous bending downwards (Figure 6), with a slope that was 
continuously decreasing to higher thresholds (Figure 7). 
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Figure 3: UH-estimation extreme value index; (a) left vert. axis ( ): Hill-type estimation of the 
slope in the exponential Q-Q plot, (b) right vert. axis (◊): Mean Squared Error of Hill-type 

regression in the exponential Q-Q plot 
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Figure 4: Hill-type regression above the optimal threshold t=50 in the exponential Q-Q plot 
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Figure 5: Hill-type estimation parameters exponential distribution; (a) left vert. axis ( ): Hill-
type estimation of the slope in the exponential Q-Q plot, (b) right vert. axis (◊): Mean squared 

error of Hill-type regression in the exponential Q-Q plot 
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Figure 6: Pareto Q-Q plot (the relation between Generalized Pareto Distribution, G(x) and daily 
discharges) 

 

      
 

Figure 7: (a) left vert. axis ( ): Hill-type estimation of the slope in the Pareto Q-Q plot, (b) right 
vert. axis (◊): Mean Squared Error of Hill-type regression in the exponential Q-Q plot 

4.2 Kenyan Data (8 stations) 

For the Kenyan stations, only monthly averaged data was available.  The analysis was done in a similar 
way as compared to the catchment of Victoria Lake in Tanzania; which includes Mara, Mwanza and 
Kagera Regions. In total, eight Kenyan stations were considered. A summary of the two most important 
calibration plots (as explained above) are shown for each of these stations in Figures 8 to 15 for North 
Awach, South Awach, Nzoia and Sio rivers, respectively. Based on these applications, it has been 
shown that the methodology has clear advantages. Using traditional methodologies, an extreme value 
analysis is often time consuming. In most cases, only a few data points of extremes are available. Even 
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when a lot of extremes have been measured, it is difficult to discriminate between different plausible 
distributions. Mostly, only few distributions can be tested in practice. The uncertainty on the threshold 
level above which the distribution holds contributes to the time consumption of the analysis. 

The applied methodology allows for an easier discrimination between competing distribution models. 
The methodology is based on quantile-quantile plots (Q-Q plots) and studies the tail behavior of the 
distribution. By analyzing the behavior of the data points in different types of Q-Q plots, the asymptotic 
behavior of the tail of the distribution can be determined and a discrimination can be made between 
Pareto-, exponential- and Weibull-type distributions. The discrimination is mainly based on an 
estimation of the extreme value index as the slope of the linear path in Q-Q plots (mainly the 
exponential, Paretao and UH-plots). This slope is estimated by a weighted linear regression. Also the 
optimal threshold level can be derived easily as the threshold level that minimizes the Mean-Squared-
Error (MSE) of the regression. The methodology is interesting because of the visual nature and it can 
be used afterwards in combination with the traditional Method Of Moments (MOM) and Maximum 
Likelihood Method (ML) methods. In that way, the advantages of both methods could be combined and 
an efficient extreme value analysis could be made. 

Traditionally, extreme value analysis are performed by testing different ‘typical’ distributions above 
the threshold levels that are chosen arbitrarily and the parameters are calibrated by a statistical method 
(e.g. method of moments (MOM), maximum likelihood method (ML), probability weighted moments 
method). An overview of these statistical methods and their application to the GPD distribution is given 
by Hosking and Wallis (1987). The traditional methodology has some disadvantages. Only limited 
number of distributions is tried in practice, possibly all of the same class, and a distribution with a 
wrong index (extreme value or Weibull index) is often determined. In spite of a good fit in the range of 
X for which observations are available, an extrapolation outside this range, by means of the 
distribution, can be erroneous in that case. Extreme events can be strongly overestimated or 
underestimated. A visualization of the distribution in the Q-Q plot of the class, to which the distribution 
belongs, makes this error undeniably clear. 
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Figure 8: Exponential Q-Q plot 
(North Awach) 

Figure 9: Hill-type estimation slope in exponential 
Q-Q plot (North Awach) 
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Figure 10: Exponential Q-Q plot 
(South Awach) 

Figure 11: Hill-type estimation slope in 
exponential Q-Q plot (South Awach) 
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Figure 12: Exponential Q-Q plot (Nzoia) Figure 13: Hill-type estimation slope in 
exponential Q-Q plot (Nzoia) 
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Figure 14: Exponential Q-Q plot (Sio) Figure 15: Hill-type estimation slope in 
exponential Q-Q plot (Sio) 

5. DISCUSSION 

To get a precise result, applicable to the hydraulic engineering practice, it is strongly recommended to 
use daily data (as applied for data from the catchment of Victoria Lake in Tanzania; which includes 
Mara, Mwanza and Kagera Regions). This is because of the peak flow that will determine the flood.  
The monthly values, only available for the Kenyan stations, are only indirect measures. Monthly 
averages should not necessarily follow the extreme value theory, because this theory is only valid for 
maxima of a large number of variables; monthly averages can be considered as 'volumes' and these can 
also follow distributions other than the Generalized Pareto Distribution (GPD). So, the fact that the data 
shown in Figures 8 to 15 fit exponential distributions well should not be considered as unconditional. 
In some cases, there was a clear influence of flooding (sudden bending down of the distribution) (like 
North Awach above 8.6, South Awach above 9.2).  For Nzoia and Sio, it might be doubtfull whether 
the extreme value index is not negative (upper limit keeps bending down; more and more flooding 
influence). For this, it would be important to have a discussion with the focal persons or to contact local 
water engineers in each river catchment to receive a better understanding of the underlying physics. For 
stations with a clear flooding influence above a given level, a distinction can be made between the 
flood frequency distribution of the river discharges (flooding influence considered) and the distribution 
of the upstream runoff discharges (based on the lower discharge points which are not subject to 
flooding). The difference between these two types of distributions is given on Figures 16 and 17 for the 
North Awach station. 
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Figure 16: Flood frequency distribution of the upstream runoff discharges (based on the lower 
points that are not influenced by flooding conditions) 
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Figure 17: Flood frequency distribution of the river discharges influenced by flooding conditions 

A methodology that has been developed recently by Beirlant et al. (1996) allows for an easier 
discrimination between competing distribution models. The methodology is based on quantile-quantile 
plots (Q-Q plots) and studies the tail behavior of the distribution. By analyzing the behavior of the data 
points in the different types of Q-Q plots, the asymptotic  behavior of the tail of the distribution can be 
determined and a discrimination can be made between Pareto-, exponential and bounded-type 
distributions. The discrimination is mainly based on an estimation of the extreme value index as the 
slope of the linear path in a so-called UH-plot. This slope is estimated by a weighted linear regression. 
Also the optimal threshold level can be derived easily as the threshold level minimizes the mean-
squared-error of the regression. The methodology is of special interest because of the visual nature and 
it can be used in combination with the traditional MOM and ML methods. In that way, the advantages 
of both methods are combined and an efficient extreme value analysis can be made. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

An extreme value analysis methodology was used to recognize the anomalies in tail behavior of the 
flood frequency distribution in an easy and visual way by means of the so-called Q-Q plots. The type of 
distribution and the optimal threshold level can be derived with this method in a most efficient way. Q-
Q plots are very useful to study the tail behaviour of empirical distributions. By looking for the Q-Q 
plot, in which the largest observations behave in an asymptotic linear way, the type of the distribution 
of the studied extremes could be derived. By performing weighted linear regressions in this plot, the 
optimal threshold can also be derived. The methodology was applied to the data from Tanzania 
(catchment of Victoria Lake in Tanzania; which includes Mara, Mwanza and Kagera Regions, daily 
discharge values from January, 1954 to December, 1986) for testing and first application. Based on the 
expertise built up for the Tanzanian data, the extreme value analysis was applied using Kenyan 
discharge data. The methodology is of special interest because of the visual nature and it can be used 
afterwards in combination with the traditional MOM and ML methods. In that way, the advantages of 
both methods could be combined and an efficient extreme value analysis could be made. To get a 
precise result, applicable to the hydraulic engineering practice, it is strongly recommended to use daily 
data (as for Tanzanian data). This is because of the peak flow that determines the flood.  The monthly 
values, as only available for the Kenyan stations, are only indirect measures. Monthly averages should 
not necessarily follow the extreme value theory, because this theory is only valid for maxima of a large 
number of variables; monthly averages can be considered as 'volumes' and these can also follow 
distributions other than the GPD. By analyzing the behavior of the data points in different types of Q-Q 
plots, the asymptotic behavior of the tail of the distribution can be determined and a discrimination can 
be made between Pareto-, exponential and bounded-type distributions. The discrimination is mainly 
based on an estimation of the extreme value index as the slope of the linear path in a so-called UH-plot. 
This slope is estimated by a weighted linear regression. Also the optimal threshold level can be derived 
easily as the threshold level minimizes the mean-squared-error of the regression. 
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